1{ 2 "chat": { 3 "llama3.2:3b": { 4 "description": "Meta's Llama 3.2 model with 3 billion parameters.", 5 "inputTokens": 8192, 6 "inputTokenPrice": 0, 7 "outputTokens": 8192, 8 "outputTokenPrice": 0 9 }, 10 "llama3.2:1b": { 11 "description": "Meta's Llama 3.2 model with 1 billion parameters.", 12 "inputTokens": 8192, 13 "inputTokenPrice": 0, 14 "outputTokens": 8192, 15 "outputTokenPrice": 0 16 }, 17 "llama3.1:405b": { 18 "description": "Llama 3.1 is a new state-of-the-art model from Meta. 405 billion parameters.", 19 "inputTokens": 8192, 20 "inputTokenPrice": 0, 21 "outputTokens": 8192, 22 "outputTokenPrice": 0 23 }, 24 "llama3.1:70b": { 25 "description": "Llama 3.1 is a new state-of-the-art model from Meta. 70 billion parameters.", 26 "inputTokens": 8192, 27 "inputTokenPrice": 0, 28 "outputTokens": 8192, 29 "outputTokenPrice": 0 30 }, 31 "llama3.1:8b": { 32 "description": "Llama 3.1 is a new state-of-the-art model from Meta. 8 billion parameters.", 33 "inputTokens": 8192, 34 "inputTokenPrice": 0, 35 "outputTokens": 8192, 36 "outputTokenPrice": 0 37 }, 38 "gemma2:27b": { 39 "description": "Google Gemma 2 is a high-performing and efficient model. 27 billion parameters.", 40 "inputTokens": 4096, 41 "inputTokenPrice": 0, 42 "outputTokens": 4096, 43 "outputTokenPrice": 0 44 }, 45 "gemma2:9b": { 46 "description": "Google Gemma 2 is a high-performing and efficient model. 9 billion parameters.", 47 "inputTokens": 4096, 48 "inputTokenPrice": 0, 49 "outputTokens": 4096, 50 "outputTokenPrice": 0 51 }, 52 "gemma2:2b": { 53 "description": "Google Gemma 2 is a high-performing and efficient model. 2 billion parameters.", 54 "inputTokens": 4096, 55 "inputTokenPrice": 0, 56 "outputTokens": 4096, 57 "outputTokenPrice": 0 58 }, 59 "qwen2.5:72b": { 60 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 72 billion parameters.", 61 "inputTokens": 128000, 62 "inputTokenPrice": 0, 63 "outputTokens": 8192, 64 "outputTokenPrice": 0 65 }, 66 "qwen2.5:32b": { 67 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 32 billion parameters.", 68 "inputTokens": 128000, 69 "inputTokenPrice": 0, 70 "outputTokens": 8192, 71 "outputTokenPrice": 0 72 }, 73 "qwen2.5:14b": { 74 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 14 billion parameters.", 75 "inputTokens": 128000, 76 "inputTokenPrice": 0, 77 "outputTokens": 8192, 78 "outputTokenPrice": 0 79 }, 80 "qwen2.5:7b": { 81 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 7 billion parameters.", 82 "inputTokens": 128000, 83 "inputTokenPrice": 0, 84 "outputTokens": 8192, 85 "outputTokenPrice": 0 86 }, 87 "qwen2.5:3b": { 88 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 3 billion parameters.", 89 "inputTokens": 128000, 90 "inputTokenPrice": 0, 91 "outputTokens": 8192, 92 "outputTokenPrice": 0 93 }, 94 "qwen2.5:1.5b": { 95 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 1.5 billion parameters.", 96 "inputTokens": 128000, 97 "inputTokenPrice": 0, 98 "outputTokens": 8192, 99 "outputTokenPrice": 0 100 }, 101 "qwen2.5:0.5b": { 102 "description": "Qwen2.5 models are pretrained on Alibaba's latest large-scale dataset. 0.5 billion parameters.", 103 "inputTokens": 128000, 104 "inputTokenPrice": 0, 105 "outputTokens": 8192, 106 "outputTokenPrice": 0 107 } 108 }, 109 "embedding": { 110 "nomic-embed-text": { 111 "description": "A high-performing open embedding model with a large token context window.", 112 "inputTokens": 8192, 113 "inputTokenPrice": 0, 114 "dimensions": 768 115 }, 116 "mxbai-embed-large": { 117 "description": "State-of-the-art large embedding model from mixedbread.ai", 118 "inputTokens": 512, 119 "inputTokenPrice": 0, 120 "dimensions": 1024 121 }, 122 "all-minilm": { 123 "description": "The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective.", 124 "inputTokens": 256, 125 "inputTokenPrice": 0, 126 "dimensions": 384 127 }, 128 "bge-large": { 129 "description": "Embedding model from BAAI mapping texts to vectors.", 130 "inputTokens": 512, 131 "inputTokenPrice": 0, 132 "dimensions": 1024 133 } 134 } 135} 136